Elasticsearch export code

This commit is contained in:
Marius Ciepluch 2024-05-06 13:12:58 +02:00
parent 66e9e67473
commit f33270e60a

126
Elasticsearch.ipynb Normal file
View File

@ -0,0 +1,126 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "eda4ddbf-c146-45b5-8a40-b9ac90f1465f",
"metadata": {},
"outputs": [],
"source": [
"# Elasticsearch \n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8747542-a2d1-4814-8dc2-acf172db2d0c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import requests\n",
"import pandas as pd\n",
"\n",
"# Elasticsearch base URL\n",
"base_url = \"http://192.168.20.106:9200\"\n",
"# Index name\n",
"index = \"winlogbeat-*\"\n",
"\n",
"# Initial search request to start scrolling\n",
"initial_response = requests.post(\n",
" f\"{base_url}/{index}/_search?scroll=1m\",\n",
" json={\n",
" \"size\": 10000, # Adjust the size as per your requirement\n",
" \"query\": {\"match_all\": {}}\n",
" }\n",
").json()\n",
"\n",
"# Extract scroll ID from the initial response\n",
"scroll_id = initial_response[\"_scroll_id\"]\n",
"\n",
"# Process initial batch of documents\n",
"hits = initial_response[\"hits\"][\"hits\"]\n",
"data = [hit[\"_source\"] for hit in hits]\n",
"\n",
"# Track total documents retrieved\n",
"total_documents_retrieved = len(data)\n",
"print(f\"Retrieved {total_documents_retrieved} documents.\")\n",
"\n",
"# Loop to fetch subsequent batches of documents until no more documents are left\n",
"while hits:\n",
" # Fetch next batch of documents using scroll API\n",
" response = requests.post(\n",
" f\"{base_url}/_search/scroll\",\n",
" json={\"scroll\": \"1m\", \"scroll_id\": scroll_id}\n",
" ).json()\n",
" \n",
" # Extract scroll ID from the response\n",
" scroll_id = response[\"_scroll_id\"]\n",
" \n",
" # Process batch of documents\n",
" hits = response[\"hits\"][\"hits\"]\n",
" \n",
" # If no hits, break out of the loop\n",
" if not hits:\n",
" break\n",
" \n",
" # Extend data with new batch of documents\n",
" data.extend([hit[\"_source\"] for hit in hits])\n",
" \n",
" # Update total documents retrieved\n",
" total_documents_retrieved += len(hits)\n",
" print(f\"Retrieved {total_documents_retrieved} documents.\")\n",
"\n",
"# Convert data to pandas DataFrame\n",
"df = pd.DataFrame(data)\n",
"\n",
"# Display DataFrame\n",
"print(df)\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "deb60f70-f62d-4802-8928-5ea18bbc7b3e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.to_json(\"lab_logs_normal_activity_may_6_2024.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9faae732-f464-4d11-924e-aeba4f293def",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}