mirror of
https://github.com/norandom/trading_analysis.git
synced 2024-11-24 22:13:43 +00:00
1850 lines
165 KiB
Plaintext
1850 lines
165 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "bf16a6eb-44a2-4dd7-8d4d-598e6f2c9b24",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Silver "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "4405f172-43b6-4245-bcd8-2c6e01fada3a",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"We can download the data from the CFTC via Python.\n",
|
|||
|
"\n",
|
|||
|
"Many data APIs become commercial for recent prices. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"id": "f3704b41-1622-4596-ae99-3201b9bd8e14",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Selected: disaggregated_fut\n",
|
|||
|
"Downloaded single year data from: 2020\n",
|
|||
|
"Stored the file f_year.txt in the working directory.\n",
|
|||
|
"Selected: disaggregated_fut\n",
|
|||
|
"Downloaded single year data from: 2021\n",
|
|||
|
"Stored the file f_year.txt in the working directory.\n",
|
|||
|
"Selected: disaggregated_fut\n",
|
|||
|
"Downloaded single year data from: 2022\n",
|
|||
|
"Stored the file f_year.txt in the working directory.\n",
|
|||
|
"Selected: disaggregated_fut\n",
|
|||
|
"Downloaded single year data from: 2023\n",
|
|||
|
"Stored the file f_year.txt in the working directory.\n",
|
|||
|
"Selected: disaggregated_fut\n",
|
|||
|
"Downloaded single year data from: 2024\n",
|
|||
|
"Stored the file f_year.txt in the working directory.\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"import cot_reports as cot # Ensure cot_reports is correctly imported and cot.cot_year() works as expected\n",
|
|||
|
"\n",
|
|||
|
"df = pd.DataFrame()\n",
|
|||
|
"begin_year = 2020\n",
|
|||
|
"end_year = 2024\n",
|
|||
|
"\n",
|
|||
|
"for i in range(begin_year, end_year + 1):\n",
|
|||
|
" # Assuming cot.cot_year returns a DataFrame\n",
|
|||
|
" single_year = pd.DataFrame(cot.cot_year(i, cot_report_type='disaggregated_fut'))\n",
|
|||
|
" single_year.to_csv(f'./COT_CFTC_{i}.csv', index=False)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"id": "f4f90eb0-dca4-4589-a385-408c66c6e0a0",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"['COT_CFTC_2022.csv', 'COT_CFTC_2023.csv', 'COT_CFTC_2021.csv', 'COT_CFTC_2020.csv', 'COT_CFTC_2024.csv']\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import glob\n",
|
|||
|
"\n",
|
|||
|
"# Adjust the path and pattern according to your CSV files location and naming convention\n",
|
|||
|
"csv_files = glob.glob('COT_CFTC_20*.csv')\n",
|
|||
|
"print(csv_files)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "414b7248-5acc-46a9-916a-cbed7228331f",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"At this point, we have the CFTC Disaggregated Futures report from 2022 to 2024 (until today)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "084eb98b-1914-49e0-b57a-4e7717ea159c",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Load the data, and prepare the dataset\n",
|
|||
|
"\n",
|
|||
|
"The CFTC report contains data on all futures, not just silver."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"id": "cb167036-4f9b-4405-a942-71fae7d7aec7",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_1629470/490941526.py:1: DtypeWarning: Columns (120,121,132,133,134,135,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
|||
|
" df = pd.read_csv('COT_CFTC_2024.csv')\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df = pd.read_csv('COT_CFTC_2024.csv')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"id": "2f554d5a-e6da-4a6c-a16e-f2b3294b4824",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(8344, 191)"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"df[\"Report_Date_as_YYYY-MM-DD\"] = pd.to_datetime(df[\"Report_Date_as_YYYY-MM-DD\"], format='%Y-%m-%d')\n",
|
|||
|
"df.set_index(\"Report_Date_as_YYYY-MM-DD\")\n",
|
|||
|
"df.shape"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"id": "4bd367af-8385-406a-87ee-5aa68b3a8b7a",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"8345\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!cat COT_CFTC_2024.csv | wc -l"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"id": "fc275bed-93a3-4c66-87e0-7312aa712f6a",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>Market_and_Exchange_Names</th>\n",
|
|||
|
" <th>As_of_Date_In_Form_YYMMDD</th>\n",
|
|||
|
" <th>Report_Date_as_YYYY-MM-DD</th>\n",
|
|||
|
" <th>CFTC_Contract_Market_Code</th>\n",
|
|||
|
" <th>CFTC_Market_Code</th>\n",
|
|||
|
" <th>CFTC_Region_Code</th>\n",
|
|||
|
" <th>CFTC_Commodity_Code</th>\n",
|
|||
|
" <th>Open_Interest_All</th>\n",
|
|||
|
" <th>Prod_Merc_Positions_Long_All</th>\n",
|
|||
|
" <th>Prod_Merc_Positions_Short_All</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>Conc_Net_LE_4_TDR_Long_Other</th>\n",
|
|||
|
" <th>Conc_Net_LE_4_TDR_Short_Other</th>\n",
|
|||
|
" <th>Conc_Net_LE_8_TDR_Long_Other</th>\n",
|
|||
|
" <th>Conc_Net_LE_8_TDR_Short_Other</th>\n",
|
|||
|
" <th>Contract_Units</th>\n",
|
|||
|
" <th>CFTC_Contract_Market_Code_Quotes</th>\n",
|
|||
|
" <th>CFTC_Market_Code_Quotes</th>\n",
|
|||
|
" <th>CFTC_Commodity_Code_Quotes</th>\n",
|
|||
|
" <th>CFTC_SubGroup_Code</th>\n",
|
|||
|
" <th>FutOnly_or_Combined</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>WHEAT-SRW - CHICAGO BOARD OF TRADE</td>\n",
|
|||
|
" <td>240813</td>\n",
|
|||
|
" <td>2024-08-13</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>401604</td>\n",
|
|||
|
" <td>68899</td>\n",
|
|||
|
" <td>85867</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>39.0</td>\n",
|
|||
|
" <td>31.7</td>\n",
|
|||
|
" <td>54.2</td>\n",
|
|||
|
" <td>42.6</td>\n",
|
|||
|
" <td>(CONTRACTS OF 5,000 BUSHELS)</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>A10</td>\n",
|
|||
|
" <td>FutOnly</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>WHEAT-SRW - CHICAGO BOARD OF TRADE</td>\n",
|
|||
|
" <td>240806</td>\n",
|
|||
|
" <td>2024-08-06</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>431547</td>\n",
|
|||
|
" <td>73401</td>\n",
|
|||
|
" <td>85750</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>41.6</td>\n",
|
|||
|
" <td>32.3</td>\n",
|
|||
|
" <td>57.3</td>\n",
|
|||
|
" <td>41.7</td>\n",
|
|||
|
" <td>(CONTRACTS OF 5,000 BUSHELS)</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>A10</td>\n",
|
|||
|
" <td>FutOnly</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>WHEAT-SRW - CHICAGO BOARD OF TRADE</td>\n",
|
|||
|
" <td>240730</td>\n",
|
|||
|
" <td>2024-07-30</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>432863</td>\n",
|
|||
|
" <td>73086</td>\n",
|
|||
|
" <td>83875</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>46.0</td>\n",
|
|||
|
" <td>28.5</td>\n",
|
|||
|
" <td>60.8</td>\n",
|
|||
|
" <td>38.4</td>\n",
|
|||
|
" <td>(CONTRACTS OF 5,000 BUSHELS)</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>A10</td>\n",
|
|||
|
" <td>FutOnly</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>WHEAT-SRW - CHICAGO BOARD OF TRADE</td>\n",
|
|||
|
" <td>240723</td>\n",
|
|||
|
" <td>2024-07-23</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>421227</td>\n",
|
|||
|
" <td>63636</td>\n",
|
|||
|
" <td>81374</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>48.3</td>\n",
|
|||
|
" <td>27.9</td>\n",
|
|||
|
" <td>63.5</td>\n",
|
|||
|
" <td>37.7</td>\n",
|
|||
|
" <td>(CONTRACTS OF 5,000 BUSHELS)</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>A10</td>\n",
|
|||
|
" <td>FutOnly</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>WHEAT-SRW - CHICAGO BOARD OF TRADE</td>\n",
|
|||
|
" <td>240716</td>\n",
|
|||
|
" <td>2024-07-16</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>413885</td>\n",
|
|||
|
" <td>64297</td>\n",
|
|||
|
" <td>81558</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>50.4</td>\n",
|
|||
|
" <td>28.0</td>\n",
|
|||
|
" <td>65.9</td>\n",
|
|||
|
" <td>37.3</td>\n",
|
|||
|
" <td>(CONTRACTS OF 5,000 BUSHELS)</td>\n",
|
|||
|
" <td>001602</td>\n",
|
|||
|
" <td>CBT</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>A10</td>\n",
|
|||
|
" <td>FutOnly</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 191 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" Market_and_Exchange_Names As_of_Date_In_Form_YYMMDD \\\n",
|
|||
|
"0 WHEAT-SRW - CHICAGO BOARD OF TRADE 240813 \n",
|
|||
|
"1 WHEAT-SRW - CHICAGO BOARD OF TRADE 240806 \n",
|
|||
|
"2 WHEAT-SRW - CHICAGO BOARD OF TRADE 240730 \n",
|
|||
|
"3 WHEAT-SRW - CHICAGO BOARD OF TRADE 240723 \n",
|
|||
|
"4 WHEAT-SRW - CHICAGO BOARD OF TRADE 240716 \n",
|
|||
|
"\n",
|
|||
|
" Report_Date_as_YYYY-MM-DD CFTC_Contract_Market_Code CFTC_Market_Code \\\n",
|
|||
|
"0 2024-08-13 001602 CBT \n",
|
|||
|
"1 2024-08-06 001602 CBT \n",
|
|||
|
"2 2024-07-30 001602 CBT \n",
|
|||
|
"3 2024-07-23 001602 CBT \n",
|
|||
|
"4 2024-07-16 001602 CBT \n",
|
|||
|
"\n",
|
|||
|
" CFTC_Region_Code CFTC_Commodity_Code Open_Interest_All \\\n",
|
|||
|
"0 0 1 401604 \n",
|
|||
|
"1 0 1 431547 \n",
|
|||
|
"2 0 1 432863 \n",
|
|||
|
"3 0 1 421227 \n",
|
|||
|
"4 0 1 413885 \n",
|
|||
|
"\n",
|
|||
|
" Prod_Merc_Positions_Long_All Prod_Merc_Positions_Short_All ... \\\n",
|
|||
|
"0 68899 85867 ... \n",
|
|||
|
"1 73401 85750 ... \n",
|
|||
|
"2 73086 83875 ... \n",
|
|||
|
"3 63636 81374 ... \n",
|
|||
|
"4 64297 81558 ... \n",
|
|||
|
"\n",
|
|||
|
" Conc_Net_LE_4_TDR_Long_Other Conc_Net_LE_4_TDR_Short_Other \\\n",
|
|||
|
"0 39.0 31.7 \n",
|
|||
|
"1 41.6 32.3 \n",
|
|||
|
"2 46.0 28.5 \n",
|
|||
|
"3 48.3 27.9 \n",
|
|||
|
"4 50.4 28.0 \n",
|
|||
|
"\n",
|
|||
|
" Conc_Net_LE_8_TDR_Long_Other Conc_Net_LE_8_TDR_Short_Other \\\n",
|
|||
|
"0 54.2 42.6 \n",
|
|||
|
"1 57.3 41.7 \n",
|
|||
|
"2 60.8 38.4 \n",
|
|||
|
"3 63.5 37.7 \n",
|
|||
|
"4 65.9 37.3 \n",
|
|||
|
"\n",
|
|||
|
" Contract_Units CFTC_Contract_Market_Code_Quotes \\\n",
|
|||
|
"0 (CONTRACTS OF 5,000 BUSHELS) 001602 \n",
|
|||
|
"1 (CONTRACTS OF 5,000 BUSHELS) 001602 \n",
|
|||
|
"2 (CONTRACTS OF 5,000 BUSHELS) 001602 \n",
|
|||
|
"3 (CONTRACTS OF 5,000 BUSHELS) 001602 \n",
|
|||
|
"4 (CONTRACTS OF 5,000 BUSHELS) 001602 \n",
|
|||
|
"\n",
|
|||
|
" CFTC_Market_Code_Quotes CFTC_Commodity_Code_Quotes CFTC_SubGroup_Code \\\n",
|
|||
|
"0 CBT 1 A10 \n",
|
|||
|
"1 CBT 1 A10 \n",
|
|||
|
"2 CBT 1 A10 \n",
|
|||
|
"3 CBT 1 A10 \n",
|
|||
|
"4 CBT 1 A10 \n",
|
|||
|
"\n",
|
|||
|
" FutOnly_or_Combined \n",
|
|||
|
"0 FutOnly \n",
|
|||
|
"1 FutOnly \n",
|
|||
|
"2 FutOnly \n",
|
|||
|
"3 FutOnly \n",
|
|||
|
"4 FutOnly \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 191 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"id": "38311a58-d12d-49ae-9abb-a17bcc7f7a22",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"# Filter for rows where \"Market_and_Exchange_Names\" matches either of the specified values\n",
|
|||
|
"silver_df = df[df[\"Market_and_Exchange_Names\"].isin([\"SILVER - COMMODITY EXCHANGE INC.\"])].copy()\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"# After filtering, you can standardize the \"Market_and_Exchange_Names\" if you want all of them to have the same name\n",
|
|||
|
"# This is optional and based on your specific requirement to 'merge' under a unified label\n",
|
|||
|
"silver_df[\"Market_and_Exchange_Names\"] = \"COPPER-GRADE #1 - COMMODITY EXCHANGE INC.\"\n",
|
|||
|
"\n",
|
|||
|
"silver_df[\"Report_Date_as_YYYY-MM-DD\"] = pd.to_datetime(df[\"Report_Date_as_YYYY-MM-DD\"], format='%Y-%m-%d')\n",
|
|||
|
"silver_df = silver_df.set_index(\"Report_Date_as_YYYY-MM-DD\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"id": "af7ce715-7958-48bd-bb4e-2dbb4ec50171",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"(33, 190)"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"silver_df.shape # we have calendar week 33"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"id": "0c1b24aa-db20-4935-828b-c7ca9f4959e4",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"['Market_and_Exchange_Names', 'As_of_Date_In_Form_YYMMDD', 'CFTC_Contract_Market_Code', 'CFTC_Market_Code', 'CFTC_Region_Code', 'CFTC_Commodity_Code', 'Open_Interest_All', 'Prod_Merc_Positions_Long_All', 'Prod_Merc_Positions_Short_All', 'Swap_Positions_Long_All', 'Swap__Positions_Short_All', 'Swap__Positions_Spread_All', 'M_Money_Positions_Long_All', 'M_Money_Positions_Short_All', 'M_Money_Positions_Spread_All', 'Other_Rept_Positions_Long_All', 'Other_Rept_Positions_Short_All', 'Other_Rept_Positions_Spread_All', 'Tot_Rept_Positions_Long_All', 'Tot_Rept_Positions_Short_All', 'NonRept_Positions_Long_All', 'NonRept_Positions_Short_All', 'Open_Interest_Old', 'Prod_Merc_Positions_Long_Old', 'Prod_Merc_Positions_Short_Old', 'Swap_Positions_Long_Old', 'Swap__Positions_Short_Old', 'Swap__Positions_Spread_Old', 'M_Money_Positions_Long_Old', 'M_Money_Positions_Short_Old', 'M_Money_Positions_Spread_Old', 'Other_Rept_Positions_Long_Old', 'Other_Rept_Positions_Short_Old', 'Other_Rept_Positions_Spread_Old', 'Tot_Rept_Positions_Long_Old', 'Tot_Rept_Positions_Short_Old', 'NonRept_Positions_Long_Old', 'NonRept_Positions_Short_Old', 'Open_Interest_Other', 'Prod_Merc_Positions_Long_Other', 'Prod_Merc_Positions_Short_Other', 'Swap_Positions_Long_Other', 'Swap__Positions_Short_Other', 'Swap__Positions_Spread_Other', 'M_Money_Positions_Long_Other', 'M_Money_Positions_Short_Other', 'M_Money_Positions_Spread_Other', 'Other_Rept_Positions_Long_Other', 'Other_Rept_Positions_Short_Other', 'Other_Rept_Positions_Spread_Other', 'Tot_Rept_Positions_Long_Other', 'Tot_Rept_Positions_Short_Other', 'NonRept_Positions_Long_Other', 'NonRept_Positions_Short_Other', 'Change_in_Open_Interest_All', 'Change_in_Prod_Merc_Long_All', 'Change_in_Prod_Merc_Short_All', 'Change_in_Swap_Long_All', 'Change_in_Swap_Short_All', 'Change_in_Swap_Spread_All', 'Change_in_M_Money_Long_All', 'Change_in_M_Money_Short_All', 'Change_in_M_Money_Spread_All', 'Change_in_Other_Rept_Long_All', 'Change_in_Other_Rept_Short_All', 'Change_in_Other_Rept_Spread_All', 'Change_in_Tot_Rept_Long_All', 'Change_in_Tot_Rept_Short_All', 'Change_in_NonRept_Long_All', 'Change_in_NonRept_Short_All', 'Pct_of_Open_Interest_All', 'Pct_of_OI_Prod_Merc_Long_All', 'Pct_of_OI_Prod_Merc_Short_All', 'Pct_of_OI_Swap_Long_All', 'Pct_of_OI_Swap_Short_All', 'Pct_of_OI_Swap_Spread_All', 'Pct_of_OI_M_Money_Long_All', 'Pct_of_OI_M_Money_Short_All', 'Pct_of_OI_M_Money_Spread_All', 'Pct_of_OI_Other_Rept_Long_All', 'Pct_of_OI_Other_Rept_Short_All', 'Pct_of_OI_Other_Rept_Spread_All', 'Pct_of_OI_Tot_Rept_Long_All', 'Pct_of_OI_Tot_Rept_Short_All', 'Pct_of_OI_NonRept_Long_All', 'Pct_of_OI_NonRept_Short_All', 'Pct_of_Open_Interest_Old', 'Pct_of_OI_Prod_Merc_Long_Old', 'Pct_of_OI_Prod_Merc_Short_Old', 'Pct_of_OI_Swap_Long_Old', 'Pct_of_OI_Swap_Short_Old', 'Pct_of_OI_Swap_Spread_Old', 'Pct_of_OI_M_Money_Long_Old', 'Pct_of_OI_M_Money_Short_Old', 'Pct_of_OI_M_Money_Spread_Old', 'Pct_of_OI_Other_Rept_Long_Old', 'Pct_of_OI_Other_Rept_Short_Old', 'Pct_of_OI_Other_Rept_Spread_Old', 'Pct_of_OI_Tot_Rept_Long_Old', 'Pct_of_OI_Tot_Rept_Short_Old', 'Pct_of_OI_NonRept_Long_Old', 'Pct_of_OI_NonRept_Short_Old', 'Pct_of_Open_Interest_Other', 'Pct_of_OI_Prod_Merc_Long_Other', 'Pct_of_OI_Prod_Merc_Short_Other', 'Pct_of_OI_Swap_Long_Other', 'Pct_of_OI_Swap_Short_Other', 'Pct_of_OI_Swap_Spread_Other', 'Pct_of_OI_M_Money_Long_Other', 'Pct_of_OI_M_Money_Short_Other', 'Pct_of_OI_M_Money_Spread_Other', 'Pct_of_OI_Other_Rept_Long_Other', 'Pct_of_OI_Other_Rept_Short_Other', 'Pct_of_OI_Other_Rept_Spread_Other', 'Pct_of_OI_Tot_Rept_Long_Other', 'Pct_of_OI_Tot_Rept_Short_Other', 'Pct_of_OI_NonRept_Long_Other', 'Pct_of_OI_NonRept_Short_Other', 'Traders_Tot_All', 'Traders_Prod_Merc_Long_All', 'Traders_Prod_Merc_Short_All', 'Traders_Swap_Long_All', 'Traders_Swap_Short_All', 'Traders_Swap_Spread_All', 'Traders_M_Money_Long_All', 'Traders_M_Money_Short_All', 'Traders_M_Money_Spread_All', 'Traders_Other_Rept_Long_All', 'Traders_Other_Rept_Short_All', 'Traders_Other_Rept_Spread_All', 'Traders_Tot_Rept_Long_All', 'Traders_Tot_Rept_Short_All', 'Traders_Tot_
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(list(silver_df.columns))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"id": "b30a8b94-6388-4476-a008-8e69959cfbb9",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"['Pct_of_Open_Interest_Old',\n",
|
|||
|
" 'Pct_of_OI_Prod_Merc_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_Prod_Merc_Short_Old',\n",
|
|||
|
" 'Pct_of_OI_Swap_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_Swap_Short_Old',\n",
|
|||
|
" 'Pct_of_OI_Swap_Spread_Old',\n",
|
|||
|
" 'Pct_of_OI_M_Money_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_M_Money_Short_Old',\n",
|
|||
|
" 'Pct_of_OI_M_Money_Spread_Old',\n",
|
|||
|
" 'Pct_of_OI_Other_Rept_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_Other_Rept_Short_Old',\n",
|
|||
|
" 'Pct_of_OI_Other_Rept_Spread_Old',\n",
|
|||
|
" 'Pct_of_OI_Tot_Rept_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_Tot_Rept_Short_Old',\n",
|
|||
|
" 'Pct_of_OI_NonRept_Long_Old',\n",
|
|||
|
" 'Pct_of_OI_NonRept_Short_Old']"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"open_interest_pct_old_columns = [col for col in df.columns if 'pct' in col.lower() and col.endswith('_Old')]\n",
|
|||
|
"open_interest_pct_old_columns"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"id": "7f04ca58-7f5b-4cef-9941-620067cd8751",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"needed_columns = [\"Open_Interest_All\", \"Pct_of_OI_Prod_Merc_Long_Old\", \"Pct_of_OI_Prod_Merc_Short_Old\"]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"id": "a862cbe7-49c8-43b1-ba34-a87f37b40daa",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>Open_Interest_All</th>\n",
|
|||
|
" <th>Pct_of_OI_Prod_Merc_Long_Old</th>\n",
|
|||
|
" <th>Pct_of_OI_Prod_Merc_Short_Old</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>Report_Date_as_YYYY-MM-DD</th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2024-08-13</th>\n",
|
|||
|
" <td>147859</td>\n",
|
|||
|
" <td>3.1</td>\n",
|
|||
|
" <td>25.3</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2024-08-06</th>\n",
|
|||
|
" <td>147537</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>25.4</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2024-07-30</th>\n",
|
|||
|
" <td>151437</td>\n",
|
|||
|
" <td>2.7</td>\n",
|
|||
|
" <td>25.4</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2024-07-23</th>\n",
|
|||
|
" <td>157106</td>\n",
|
|||
|
" <td>2.2</td>\n",
|
|||
|
" <td>25.8</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2024-07-16</th>\n",
|
|||
|
" <td>166641</td>\n",
|
|||
|
" <td>1.7</td>\n",
|
|||
|
" <td>26.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" Open_Interest_All Pct_of_OI_Prod_Merc_Long_Old \\\n",
|
|||
|
"Report_Date_as_YYYY-MM-DD \n",
|
|||
|
"2024-08-13 147859 3.1 \n",
|
|||
|
"2024-08-06 147537 3.0 \n",
|
|||
|
"2024-07-30 151437 2.7 \n",
|
|||
|
"2024-07-23 157106 2.2 \n",
|
|||
|
"2024-07-16 166641 1.7 \n",
|
|||
|
"\n",
|
|||
|
" Pct_of_OI_Prod_Merc_Short_Old \n",
|
|||
|
"Report_Date_as_YYYY-MM-DD \n",
|
|||
|
"2024-08-13 25.3 \n",
|
|||
|
"2024-08-06 25.4 \n",
|
|||
|
"2024-07-30 25.4 \n",
|
|||
|
"2024-07-23 25.8 \n",
|
|||
|
"2024-07-16 26.0 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"filtered_silver_df = silver_df[needed_columns].copy()\n",
|
|||
|
"filtered_silver_df.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "106e2cd2-8c1a-407e-9c1d-94301b3261e7",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ac29c5fd-e220-4c6c-9366-ce3349a71385",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Open Interest (COT) CFTC"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 29,
|
|||
|
"id": "6c517b33-fae5-44f2-be07-00b7e9a65cac",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.plotly.v1+json": {
|
|||
|
"config": {
|
|||
|
"plotlyServerURL": "https://plot.ly"
|
|||
|
},
|
|||
|
"data": [
|
|||
|
{
|
|||
|
"line": {
|
|||
|
"color": "blue",
|
|||
|
"width": 2
|
|||
|
},
|
|||
|
"mode": "lines",
|
|||
|
"name": "Open Interest",
|
|||
|
"type": "scatter",
|
|||
|
"x": [
|
|||
|
"2024-08-13T00:00:00",
|
|||
|
"2024-08-06T00:00:00",
|
|||
|
"2024-07-30T00:00:00",
|
|||
|
"2024-07-23T00:00:00",
|
|||
|
"2024-07-16T00:00:00",
|
|||
|
"2024-07-09T00:00:00",
|
|||
|
"2024-07-02T00:00:00",
|
|||
|
"2024-06-25T00:00:00",
|
|||
|
"2024-06-18T00:00:00",
|
|||
|
"2024-06-11T00:00:00",
|
|||
|
"2024-06-04T00:00:00",
|
|||
|
"2024-05-28T00:00:00",
|
|||
|
"2024-05-21T00:00:00",
|
|||
|
"2024-05-14T00:00:00",
|
|||
|
"2024-05-07T00:00:00",
|
|||
|
"2024-04-30T00:00:00",
|
|||
|
"2024-04-23T00:00:00",
|
|||
|
"2024-04-16T00:00:00",
|
|||
|
"2024-04-09T00:00:00",
|
|||
|
"2024-04-02T00:00:00",
|
|||
|
"2024-03-26T00:00:00",
|
|||
|
"2024-03-19T00:00:00",
|
|||
|
"2024-03-12T00:00:00",
|
|||
|
"2024-03-05T00:00:00",
|
|||
|
"2024-02-27T00:00:00",
|
|||
|
"2024-02-20T00:00:00",
|
|||
|
"2024-02-13T00:00:00",
|
|||
|
"2024-02-06T00:00:00",
|
|||
|
"2024-01-30T00:00:00",
|
|||
|
"2024-01-23T00:00:00",
|
|||
|
"2024-01-16T00:00:00",
|
|||
|
"2024-01-09T00:00:00",
|
|||
|
"2024-01-02T00:00:00"
|
|||
|
],
|
|||
|
"y": [
|
|||
|
147859,
|
|||
|
147537,
|
|||
|
151437,
|
|||
|
157106,
|
|||
|
166641,
|
|||
|
163245,
|
|||
|
154724,
|
|||
|
166470,
|
|||
|
176605,
|
|||
|
176036,
|
|||
|
179854,
|
|||
|
184846,
|
|||
|
186945,
|
|||
|
171371,
|
|||
|
161868,
|
|||
|
166315,
|
|||
|
175740,
|
|||
|
175784,
|
|||
|
174397,
|
|||
|
166823,
|
|||
|
160327,
|
|||
|
153154,
|
|||
|
144534,
|
|||
|
141026,
|
|||
|
144382,
|
|||
|
146584,
|
|||
|
152544,
|
|||
|
147333,
|
|||
|
136544,
|
|||
|
138617,
|
|||
|
131956,
|
|||
|
131992,
|
|||
|
134725
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"layout": {
|
|||
|
"height": 600,
|
|||
|
"hovermode": "x unified",
|
|||
|
"template": {
|
|||
|
"data": {
|
|||
|
"bar": [
|
|||
|
{
|
|||
|
"error_x": {
|
|||
|
"color": "#2a3f5f"
|
|||
|
},
|
|||
|
"error_y": {
|
|||
|
"color": "#2a3f5f"
|
|||
|
},
|
|||
|
"marker": {
|
|||
|
"line": {
|
|||
|
"color": "#E5ECF6",
|
|||
|
"width": 0.5
|
|||
|
},
|
|||
|
"pattern": {
|
|||
|
"fillmode": "overlay",
|
|||
|
"size": 10,
|
|||
|
"solidity": 0.2
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "bar"
|
|||
|
}
|
|||
|
],
|
|||
|
"barpolar": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"line": {
|
|||
|
"color": "#E5ECF6",
|
|||
|
"width": 0.5
|
|||
|
},
|
|||
|
"pattern": {
|
|||
|
"fillmode": "overlay",
|
|||
|
"size": 10,
|
|||
|
"solidity": 0.2
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "barpolar"
|
|||
|
}
|
|||
|
],
|
|||
|
"carpet": [
|
|||
|
{
|
|||
|
"aaxis": {
|
|||
|
"endlinecolor": "#2a3f5f",
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"minorgridcolor": "white",
|
|||
|
"startlinecolor": "#2a3f5f"
|
|||
|
},
|
|||
|
"baxis": {
|
|||
|
"endlinecolor": "#2a3f5f",
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"minorgridcolor": "white",
|
|||
|
"startlinecolor": "#2a3f5f"
|
|||
|
},
|
|||
|
"type": "carpet"
|
|||
|
}
|
|||
|
],
|
|||
|
"choropleth": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"type": "choropleth"
|
|||
|
}
|
|||
|
],
|
|||
|
"contour": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "contour"
|
|||
|
}
|
|||
|
],
|
|||
|
"contourcarpet": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"type": "contourcarpet"
|
|||
|
}
|
|||
|
],
|
|||
|
"heatmap": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "heatmap"
|
|||
|
}
|
|||
|
],
|
|||
|
"heatmapgl": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "heatmapgl"
|
|||
|
}
|
|||
|
],
|
|||
|
"histogram": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"pattern": {
|
|||
|
"fillmode": "overlay",
|
|||
|
"size": 10,
|
|||
|
"solidity": 0.2
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "histogram"
|
|||
|
}
|
|||
|
],
|
|||
|
"histogram2d": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "histogram2d"
|
|||
|
}
|
|||
|
],
|
|||
|
"histogram2dcontour": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "histogram2dcontour"
|
|||
|
}
|
|||
|
],
|
|||
|
"mesh3d": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"type": "mesh3d"
|
|||
|
}
|
|||
|
],
|
|||
|
"parcoords": [
|
|||
|
{
|
|||
|
"line": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "parcoords"
|
|||
|
}
|
|||
|
],
|
|||
|
"pie": [
|
|||
|
{
|
|||
|
"automargin": true,
|
|||
|
"type": "pie"
|
|||
|
}
|
|||
|
],
|
|||
|
"scatter": [
|
|||
|
{
|
|||
|
"fillpattern": {
|
|||
|
"fillmode": "overlay",
|
|||
|
"size": 10,
|
|||
|
"solidity": 0.2
|
|||
|
},
|
|||
|
"type": "scatter"
|
|||
|
}
|
|||
|
],
|
|||
|
"scatter3d": [
|
|||
|
{
|
|||
|
"line": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scatter3d"
|
|||
|
}
|
|||
|
],
|
|||
|
"scattercarpet": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scattercarpet"
|
|||
|
}
|
|||
|
],
|
|||
|
"scattergeo": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scattergeo"
|
|||
|
}
|
|||
|
],
|
|||
|
"scattergl": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scattergl"
|
|||
|
}
|
|||
|
],
|
|||
|
"scattermapbox": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scattermapbox"
|
|||
|
}
|
|||
|
],
|
|||
|
"scatterpolar": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scatterpolar"
|
|||
|
}
|
|||
|
],
|
|||
|
"scatterpolargl": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scatterpolargl"
|
|||
|
}
|
|||
|
],
|
|||
|
"scatterternary": [
|
|||
|
{
|
|||
|
"marker": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "scatterternary"
|
|||
|
}
|
|||
|
],
|
|||
|
"surface": [
|
|||
|
{
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"colorscale": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"type": "surface"
|
|||
|
}
|
|||
|
],
|
|||
|
"table": [
|
|||
|
{
|
|||
|
"cells": {
|
|||
|
"fill": {
|
|||
|
"color": "#EBF0F8"
|
|||
|
},
|
|||
|
"line": {
|
|||
|
"color": "white"
|
|||
|
}
|
|||
|
},
|
|||
|
"header": {
|
|||
|
"fill": {
|
|||
|
"color": "#C8D4E3"
|
|||
|
},
|
|||
|
"line": {
|
|||
|
"color": "white"
|
|||
|
}
|
|||
|
},
|
|||
|
"type": "table"
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
"layout": {
|
|||
|
"annotationdefaults": {
|
|||
|
"arrowcolor": "#2a3f5f",
|
|||
|
"arrowhead": 0,
|
|||
|
"arrowwidth": 1
|
|||
|
},
|
|||
|
"autotypenumbers": "strict",
|
|||
|
"coloraxis": {
|
|||
|
"colorbar": {
|
|||
|
"outlinewidth": 0,
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"colorscale": {
|
|||
|
"diverging": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#8e0152"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1,
|
|||
|
"#c51b7d"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2,
|
|||
|
"#de77ae"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3,
|
|||
|
"#f1b6da"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4,
|
|||
|
"#fde0ef"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5,
|
|||
|
"#f7f7f7"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6,
|
|||
|
"#e6f5d0"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7,
|
|||
|
"#b8e186"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8,
|
|||
|
"#7fbc41"
|
|||
|
],
|
|||
|
[
|
|||
|
0.9,
|
|||
|
"#4d9221"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#276419"
|
|||
|
]
|
|||
|
],
|
|||
|
"sequential": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
],
|
|||
|
"sequentialminus": [
|
|||
|
[
|
|||
|
0,
|
|||
|
"#0d0887"
|
|||
|
],
|
|||
|
[
|
|||
|
0.1111111111111111,
|
|||
|
"#46039f"
|
|||
|
],
|
|||
|
[
|
|||
|
0.2222222222222222,
|
|||
|
"#7201a8"
|
|||
|
],
|
|||
|
[
|
|||
|
0.3333333333333333,
|
|||
|
"#9c179e"
|
|||
|
],
|
|||
|
[
|
|||
|
0.4444444444444444,
|
|||
|
"#bd3786"
|
|||
|
],
|
|||
|
[
|
|||
|
0.5555555555555556,
|
|||
|
"#d8576b"
|
|||
|
],
|
|||
|
[
|
|||
|
0.6666666666666666,
|
|||
|
"#ed7953"
|
|||
|
],
|
|||
|
[
|
|||
|
0.7777777777777778,
|
|||
|
"#fb9f3a"
|
|||
|
],
|
|||
|
[
|
|||
|
0.8888888888888888,
|
|||
|
"#fdca26"
|
|||
|
],
|
|||
|
[
|
|||
|
1,
|
|||
|
"#f0f921"
|
|||
|
]
|
|||
|
]
|
|||
|
},
|
|||
|
"colorway": [
|
|||
|
"#636efa",
|
|||
|
"#EF553B",
|
|||
|
"#00cc96",
|
|||
|
"#ab63fa",
|
|||
|
"#FFA15A",
|
|||
|
"#19d3f3",
|
|||
|
"#FF6692",
|
|||
|
"#B6E880",
|
|||
|
"#FF97FF",
|
|||
|
"#FECB52"
|
|||
|
],
|
|||
|
"font": {
|
|||
|
"color": "#2a3f5f"
|
|||
|
},
|
|||
|
"geo": {
|
|||
|
"bgcolor": "white",
|
|||
|
"lakecolor": "white",
|
|||
|
"landcolor": "#E5ECF6",
|
|||
|
"showlakes": true,
|
|||
|
"showland": true,
|
|||
|
"subunitcolor": "white"
|
|||
|
},
|
|||
|
"hoverlabel": {
|
|||
|
"align": "left"
|
|||
|
},
|
|||
|
"hovermode": "closest",
|
|||
|
"mapbox": {
|
|||
|
"style": "light"
|
|||
|
},
|
|||
|
"paper_bgcolor": "white",
|
|||
|
"plot_bgcolor": "#E5ECF6",
|
|||
|
"polar": {
|
|||
|
"angularaxis": {
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"bgcolor": "#E5ECF6",
|
|||
|
"radialaxis": {
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"scene": {
|
|||
|
"xaxis": {
|
|||
|
"backgroundcolor": "#E5ECF6",
|
|||
|
"gridcolor": "white",
|
|||
|
"gridwidth": 2,
|
|||
|
"linecolor": "white",
|
|||
|
"showbackground": true,
|
|||
|
"ticks": "",
|
|||
|
"zerolinecolor": "white"
|
|||
|
},
|
|||
|
"yaxis": {
|
|||
|
"backgroundcolor": "#E5ECF6",
|
|||
|
"gridcolor": "white",
|
|||
|
"gridwidth": 2,
|
|||
|
"linecolor": "white",
|
|||
|
"showbackground": true,
|
|||
|
"ticks": "",
|
|||
|
"zerolinecolor": "white"
|
|||
|
},
|
|||
|
"zaxis": {
|
|||
|
"backgroundcolor": "#E5ECF6",
|
|||
|
"gridcolor": "white",
|
|||
|
"gridwidth": 2,
|
|||
|
"linecolor": "white",
|
|||
|
"showbackground": true,
|
|||
|
"ticks": "",
|
|||
|
"zerolinecolor": "white"
|
|||
|
}
|
|||
|
},
|
|||
|
"shapedefaults": {
|
|||
|
"line": {
|
|||
|
"color": "#2a3f5f"
|
|||
|
}
|
|||
|
},
|
|||
|
"ternary": {
|
|||
|
"aaxis": {
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"baxis": {
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": ""
|
|||
|
},
|
|||
|
"bgcolor": "#E5ECF6",
|
|||
|
"caxis": {
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"title": {
|
|||
|
"x": 0.05
|
|||
|
},
|
|||
|
"xaxis": {
|
|||
|
"automargin": true,
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": "",
|
|||
|
"title": {
|
|||
|
"standoff": 15
|
|||
|
},
|
|||
|
"zerolinecolor": "white",
|
|||
|
"zerolinewidth": 2
|
|||
|
},
|
|||
|
"yaxis": {
|
|||
|
"automargin": true,
|
|||
|
"gridcolor": "white",
|
|||
|
"linecolor": "white",
|
|||
|
"ticks": "",
|
|||
|
"title": {
|
|||
|
"standoff": 15
|
|||
|
},
|
|||
|
"zerolinecolor": "white",
|
|||
|
"zerolinewidth": 2
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"title": {
|
|||
|
"text": "COT Data: Open Interest Over Time (Silver)"
|
|||
|
},
|
|||
|
"width": 800,
|
|||
|
"xaxis": {
|
|||
|
"autorange": true,
|
|||
|
"dtick": "M1",
|
|||
|
"range": [
|
|||
|
"2024-01-02",
|
|||
|
"2024-08-13"
|
|||
|
],
|
|||
|
"tickangle": 45,
|
|||
|
"tickformat": "%d %b %Y",
|
|||
|
"ticklabelmode": "period",
|
|||
|
"title": {
|
|||
|
"text": "Date"
|
|||
|
},
|
|||
|
"type": "date"
|
|||
|
},
|
|||
|
"yaxis": {
|
|||
|
"autorange": true,
|
|||
|
"range": [
|
|||
|
128901.05555555556,
|
|||
|
189999.94444444444
|
|||
|
],
|
|||
|
"title": {
|
|||
|
"text": "Open Interest"
|
|||
|
},
|
|||
|
"type": "linear"
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAJYCAYAAADbkteOAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm4VdP7x79nuPeekKRJIjJTJJpEI5IUSqEMjZTSnIpEM0WDUqmkiZKSoSikUZQpZJ6FJj+Jpjudc/7/d1/7ure695599hn2Xuu7n8eT7llr7bU+73vuPufTGjzhcDgMXiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRggYCHUskCLRYlARIgARIgARIgARIgARIgARIgARIgARIwCFAqMRFIgARIgARIgARIgARIgARIgARIgARIgAQsE6BUsoyMFUiABEiABEiABEiABEiABEiABEiABEiABCiVmAMkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKWCVAqWUbGCiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApRKzAESIAESIAESIAESIAESIAESIAESIAESIAHLBCiVLCNjBRIgARIgARIgARIgARIgARIgARIgARIgAUol5gAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBlApRKlpGxAgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAKUSc4AESIAESIAESIAESIAESIAESIAESIAESMAyAUoly8hYgQRIgARIgARIgARIgARIgARIgARIgARIgFKJOUACJEACJEACJEACJEACJEACJEACJEACJGCZAKWSZWSsQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQKnEHCABEiABEiABEiABEiABEiABEiABEiABErBMgFLJMjJWIAESIAESIAESIAESIAESIAESIAESIAESoFRiDpAACZAACZAACZAACZAACZAACZAACZAACVgmQKlkGRkrkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJUCoxB0iABEiABEiABEiABEiABEiABEiABEiABCwToFSyjIwVSIAESIAESIAESIAESIAESIAESIAESIAEKJWYAyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApYJUCpZRsYKJEACJEACJEACJEACJEACJEACJEACJEAClErMARIgARIgARIgARIgARIgARIgARIgARIgAcsEKJUsI2MFEiABEiABEiABEiABEiABEiABEiABEiABSiXmAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgGUClEqWkbECCZAACZAACZAACZAACZAACZAACZAACZAApRJzgARIgARIgARIgARIgARIgARIgARIgARIwDIBSiXLyFiBBEiABEiABEiABEiABEiABEiABEiABEiAUok5QAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkYJkApZJlZKxAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAqcQcIAESIAESIAESIAESIAESIAESIAESIAESsEyAUskyMlYgARIgARIgARIgARIgARIgARIgARIgARKgVGIOkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWCZAqWQZGSuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlQKjEHSIAESIAESIAESIAESIAESIAESIAESIAELBOgVLKMjBVIgARIgARIgARIgARIgARIgARIgARIgAS0l0pZ2UHs2PU/pKWmotSJx8Pv8xWYFeFwGLv/txf7Dx7CqeXLIDU1hRlkg8Df+w5g1x9/4eRypXDcscVstMSqbiCQHQxi+87/wev14uRypeH1etzQ7UL7KL8TDhxMh8/nQ7FAqiPHs+iV1ThwKB3XNKiJCieVztdH6f+evfvwz74DOKHEcShR/Lgj4pKRmYWsrGwEAqm5vx+Xv/Ue/vp7H+5o1TjhY5b+LFi6CmGEccv1jXDsMYGE94E3JAESIAESIAESIAESIAESyCGgrVR6c92HePKZpfjhl+35cqFBnYvR4tq6aHT5JblfrkR+PDb1ebyx9gMcPJSeW/78s0/DAz1vxyUXnm38bOyUhZi7+I2IcmvT8qkoftwxRy27ePlaDH18Tr7XTjyhOM48vQKuu6o2mjSoWWDdom6+7fddWLxsHepfVhXVq55bVPGYvy5iYe4Lb2DOohXGl1nzKlemJLq3b4GWTevC43G2bPjmh1/RstOQfGxOO6UcXn92jCVewWAIE2cuwRmnlTdyzumXyIkdu/eg912tLHX1x207MHLCPGze8tUR77UHe9+J8mVPtNRePAuLKLnihh4R3aJz2+vQunkDXNPmPlQ5txIWTX84onqJLLRqw0foNWQyWjath2H9O+T+TjuUnok5L6zAMwtX5PudJn27vEYVY1xX16tudHXI2Gew9PX1eGpMP9StdaHxs9vvHYUtn3+HL9bm/z2VqLGZvyM7tWmKvl1uTtRteR8SIAESIAESIAESIAESIIHDCGgplQaNnoFlb75roLit5dXGl/o//tyLT7/8Ae99+IXx8w9WPIVjigWMmRW3dB1mCBCRSFfWvcT41/zPvvoht42H+7bDzdc3hPzr/Xsf5dSXa+8/+7H23U8gwuSySyvnQy9fpgua2fDCq2swbPxc1Lj4PJxdqQL+2X/QmNHzwSdfG22cUr4MFk57CCKarF7vb/kaHfo8igHd26Bd62usVrdVXoRS536PGeOQvt/YpC5OrVAWP/6yHS++tt74cnvdlbUxdkhXW/eJd2URDytWv48Vqzfj463fGrM1Kp9zOpo3rmPp1jL74+KrO0NE5pTRvS3VTUbhO3qMNsZrRSRs2PwZug4cb3S30eXVjJyWPHhn81ZDMsl77JnxA3Dh+WckY0hH3FNmHY2e9Gy+n8t7Wt5/0v/jix+b+9oVNS80xiPS5fRTT8LA7m0cMQazEwcPZaDZnYNQovixWDxzWL5ZmBNmLMbTC14z3ocN6lTDOWecAhHOWz7/Hl9994shj0QiyTV/yZt498MvcG+HFqh87unGz5ItlaQPDz8+G0uWr8Orc0YZwp0XCZAACZAACZAACZAACZBA4gloJ5XML7kiemaNG4BKFcvno77uvU/Rf/g0rFs60fjCa/4rvQiD4f075FvytnrjFvQY/IRRbtWicShx/H9fOKVRmQV1fbsHcGOTKzBqUOeIo2tKpdH334Ubrrk8t558sR0zZSHeWPs+LrrgTDwzfqDlJTfJlEoi8kToyRfY6WP7o2zpE3LH9tO2HejUb6zx5X3W+AGofckFEfOKRUFZBmR1hpTEYt7iN7Bg6hBUveBMy92wIpWi6Z/lDhVRwapUEnl03e2D8NuOP/Bg7zvQ5sYrc+8QCoUxadaLmPncclxy4TmYP/mBWHc3Zu0NGPEUXnt7E1Y8NwYVK5SLWbvxbkj4Tp+/zPg9V/vS/95P3//0O27oMNh4Hy6Y+tARv0NkRuamj7+EyPKCrlhJJTt5Lf8Q0OCm3qhV7Xzjd4bV92+8+bN9EiABEiABEiABEiABEtCBgHZSqentA/HLb7vw1Ji+qFvroqPGWGYGFT+2mPFluEnbAYY0WvvixKPu3THqiflY8NLb6N6hBbq1uyFfe7GWStK4iIjuD0zExg8+z3fPz778AdPmvWrM+pF+S58vPK8S7mjdGA3rVDP6JWVGPfEsPv/mJ2O20xmnnWz8XJbv3XVbM+P1otrIO0ARatnBEAb3ut1or7BLvjxeeXNfQxoVJGHky2zfoVPySYYvvvkZT85+yRBzP/+6EyvXbMa3P/6GalXORr+uNxt/5r2E+RNPL8GWrd8Zs8vk9Xva3WAs6TGvl1ZsgCx/7NGxBZa99R5Wv/Oxweyy6pUxuOftR4jGgsZVkFSSn8s4u3e4EVNmvwwRmXI1aVgTA7rdaixdlFlZvR960oijxMpcilgskIbxQ7sZ5UXKzF/8JlaueT83ZvVqX4SenW7KXf6YnpGJPg8Ls7ON2XJLX1uPrV//aLwuy53kioTJ//b8jVkLX8fG97ca5WU5n7C79YZGxiwiyfOXV240+l2vdtVcJCKLDt+nx3xRZu4NHDXdYD/jsf5HYBSxdGOHwcb9npkw0JADshxQlhcO6X0HTj5s/x9ZgvXW+o/Qrf2NRm7LJTMBRext/fon4++
|
|||
|
"text/html": [
|
|||
|
"<div> <div id=\"4682477c-df05-4b78-8607-c7bf85a839c3\" class=\"plotly-graph-div\" style=\"height:600px; width:800px;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"4682477c-df05-4b78-8607-c7bf85a839c3\")) { Plotly.newPlot( \"4682477c-df05-4b78-8607-c7bf85a839c3\", [{\"line\":{\"color\":\"blue\",\"width\":2},\"mode\":\"lines\",\"name\":\"Open Interest\",\"x\":[\"2024-08-13T00:00:00\",\"2024-08-06T00:00:00\",\"2024-07-30T00:00:00\",\"2024-07-23T00:00:00\",\"2024-07-16T00:00:00\",\"2024-07-09T00:00:00\",\"2024-07-02T00:00:00\",\"2024-06-25T00:00:00\",\"2024-06-18T00:00:00\",\"2024-06-11T00:00:00\",\"2024-06-04T00:00:00\",\"2024-05-28T00:00:00\",\"2024-05-21T00:00:00\",\"2024-05-14T00:00:00\",\"2024-05-07T00:00:00\",\"2024-04-30T00:00:00\",\"2024-04-23T00:00:00\",\"2024-04-16T00:00:00\",\"2024-04-09T00:00:00\",\"2024-04-02T00:00:00\",\"2024-03-26T00:00:00\",\"2024-03-19T00:00:00\",\"2024-03-12T00:00:00\",\"2024-03-05T00:00:00\",\"2024-02-27T00:00:00\",\"2024-02-20T00:00:00\",\"2024-02-13T00:00:00\",\"2024-02-06T00:00:00\",\"2024-01-30T00:00:00\",\"2024-01-23T00:00:00\",\"2024-01-16T00:00:00\",\"2024-01-09T00:00:00\",\"2024-01-02T00:00:00\"],\"y\":[147859,147537,151437,157106,166641,163245,154724,166470,176605,176036,179854,184846,186945,171371,161868,166315,175740,175784,174397,166823,160327,153154,144534,141026,144382,146584,152544,147333,136544,138617,131956,131992,134725],\"type\":\"scatter\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0
|
|||
|
" \n",
|
|||
|
"var gd = document.getElementById('4682477c-df05-4b78-8607-c7bf85a839c3');\n",
|
|||
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|||
|
" var display = window.getComputedStyle(gd).display;\n",
|
|||
|
" if (!display || display === 'none') {{\n",
|
|||
|
" console.log([gd, 'removed!']);\n",
|
|||
|
" Plotly.purge(gd);\n",
|
|||
|
" observer.disconnect();\n",
|
|||
|
" }}\n",
|
|||
|
"}});\n",
|
|||
|
"\n",
|
|||
|
"// Listen for the removal of the full notebook cells\n",
|
|||
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|||
|
"if (notebookContainer) {{\n",
|
|||
|
" x.observe(notebookContainer, {childList: true});\n",
|
|||
|
"}}\n",
|
|||
|
"\n",
|
|||
|
"// Listen for the clearing of the current output cell\n",
|
|||
|
"var outputEl = gd.closest('.output');\n",
|
|||
|
"if (outputEl) {{\n",
|
|||
|
" x.observe(outputEl, {childList: true});\n",
|
|||
|
"}}\n",
|
|||
|
"\n",
|
|||
|
" }) }; }); </script> </div>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Metrics for Open Interest:\n",
|
|||
|
"Volatility (Standard Deviation): 15889.35\n",
|
|||
|
"Average: 158040.03\n",
|
|||
|
"Median: 157106.00\n",
|
|||
|
"Minimum: 131956.00\n",
|
|||
|
"Maximum: 186945.00\n",
|
|||
|
"Typical Range: 146584.00 to 171371.00\n",
|
|||
|
"\n",
|
|||
|
"Overall trend: Downward\n",
|
|||
|
"\n",
|
|||
|
"Significant points:\n",
|
|||
|
"Peak on 4: 166641.00\n",
|
|||
|
"Peak on 12: 186945.00\n",
|
|||
|
"Peak on 17: 175784.00\n",
|
|||
|
"Peak on 26: 152544.00\n",
|
|||
|
"Peak on 29: 138617.00\n",
|
|||
|
"Trough on 6: 154724.00\n",
|
|||
|
"Trough on 14: 161868.00\n",
|
|||
|
"Trough on 23: 141026.00\n",
|
|||
|
"Trough on 28: 136544.00\n",
|
|||
|
"Trough on 30: 131956.00\n",
|
|||
|
"\n",
|
|||
|
"Sudden changes (>5% day-to-day):\n",
|
|||
|
"2024-07-16 00:00:00: 6.07% change\n",
|
|||
|
"2024-07-02 00:00:00: -5.22% change\n",
|
|||
|
"2024-06-25 00:00:00: 7.59% change\n",
|
|||
|
"2024-06-18 00:00:00: 6.09% change\n",
|
|||
|
"2024-05-14 00:00:00: -8.33% change\n",
|
|||
|
"2024-05-07 00:00:00: -5.55% change\n",
|
|||
|
"2024-04-23 00:00:00: 5.67% change\n",
|
|||
|
"2024-03-12 00:00:00: -5.63% change\n",
|
|||
|
"2024-01-30 00:00:00: -7.32% change\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"import plotly.graph_objects as go\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"from scipy import signal\n",
|
|||
|
"\n",
|
|||
|
"# Assuming df is your DataFrame with the COT data\n",
|
|||
|
"# If not, you'll need to load your data here\n",
|
|||
|
"\n",
|
|||
|
"# Create the main figure\n",
|
|||
|
"fig = go.Figure()\n",
|
|||
|
"\n",
|
|||
|
"# Add trace for Open Interest\n",
|
|||
|
"fig.add_trace(go.Scatter(\n",
|
|||
|
" x=filtered_silver_df.index, \n",
|
|||
|
" y=filtered_silver_df['Open_Interest_All'], \n",
|
|||
|
" mode='lines',\n",
|
|||
|
" name='Open Interest',\n",
|
|||
|
" line=dict(width=2, color='blue')\n",
|
|||
|
"))\n",
|
|||
|
"\n",
|
|||
|
"# Update layout\n",
|
|||
|
"fig.update_layout(\n",
|
|||
|
" title='COT Data: Open Interest Over Time (Silver)',\n",
|
|||
|
" yaxis_title='Open Interest',\n",
|
|||
|
" xaxis_title='Date',\n",
|
|||
|
" height=600,\n",
|
|||
|
" width=800,\n",
|
|||
|
" hovermode='x unified'\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"# Improve date labeling for better readability\n",
|
|||
|
"fig.update_xaxes(\n",
|
|||
|
" tickformat=\"%d %b %Y\",\n",
|
|||
|
" tickangle=45,\n",
|
|||
|
" dtick=\"M1\",\n",
|
|||
|
" ticklabelmode=\"period\"\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"# Show the plot\n",
|
|||
|
"fig.show()\n",
|
|||
|
"\n",
|
|||
|
"# Calculate and print metrics\n",
|
|||
|
"print(\"\\nMetrics for Open Interest:\")\n",
|
|||
|
"data = filtered_silver_df['Open_Interest_All']\n",
|
|||
|
"\n",
|
|||
|
"print(f\"Volatility (Standard Deviation): {data.std():.2f}\")\n",
|
|||
|
"print(f\"Average: {data.mean():.2f}\")\n",
|
|||
|
"print(f\"Median: {data.median():.2f}\")\n",
|
|||
|
"print(f\"Minimum: {data.min():.2f}\")\n",
|
|||
|
"print(f\"Maximum: {data.max():.2f}\")\n",
|
|||
|
"\n",
|
|||
|
"# Calculate typical range\n",
|
|||
|
"typical_low = np.percentile(data, 25)\n",
|
|||
|
"typical_high = np.percentile(data, 75)\n",
|
|||
|
"print(f\"Typical Range: {typical_low:.2f} to {typical_high:.2f}\")\n",
|
|||
|
"\n",
|
|||
|
"# Identify trends\n",
|
|||
|
"def identify_trend(series):\n",
|
|||
|
" # Calculate the overall trend\n",
|
|||
|
" trend = np.polyfit(range(len(series)), series, 1)[0]\n",
|
|||
|
" if trend > 0:\n",
|
|||
|
" return \"Upward\"\n",
|
|||
|
" elif trend < 0:\n",
|
|||
|
" return \"Downward\"\n",
|
|||
|
" else:\n",
|
|||
|
" return \"Stable\"\n",
|
|||
|
"\n",
|
|||
|
"trend = identify_trend(data)\n",
|
|||
|
"print(f\"\\nOverall trend: {trend}\")\n",
|
|||
|
"\n",
|
|||
|
"# Identify significant points\n",
|
|||
|
"def find_peaks(series, prominence=1000):\n",
|
|||
|
" peaks, _ = signal.find_peaks(series, prominence=prominence)\n",
|
|||
|
" troughs, _ = signal.find_peaks(-series, prominence=prominence)\n",
|
|||
|
" return peaks, troughs\n",
|
|||
|
"\n",
|
|||
|
"peaks, troughs = find_peaks(data)\n",
|
|||
|
"\n",
|
|||
|
"print(\"\\nSignificant points:\")\n",
|
|||
|
"for peak in peaks:\n",
|
|||
|
" print(f\"Peak on {df.index[peak]}: {data.iloc[peak]:.2f}\")\n",
|
|||
|
"for trough in troughs:\n",
|
|||
|
" print(f\"Trough on {df.index[trough]}: {data.iloc[trough]:.2f}\")\n",
|
|||
|
"\n",
|
|||
|
"# Identify sudden changes\n",
|
|||
|
"pct_change = data.pct_change()\n",
|
|||
|
"sudden_changes = pct_change[abs(pct_change) > 0.05] # 5% threshold\n",
|
|||
|
"if not sudden_changes.empty:\n",
|
|||
|
" print(\"\\nSudden changes (>5% day-to-day):\")\n",
|
|||
|
" for date, change in sudden_changes.items():\n",
|
|||
|
" print(f\"{date}: {change*100:.2f}% change\")\n",
|
|||
|
"else:\n",
|
|||
|
" print(\"\\nNo sudden changes above 5% threshold detected.\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "ce80decc-23b4-4ae5-b112-1e433440a05f",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ede29b5a-eb59-448c-a7d6-bba51d6dee84",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Data Export for AmiBroker\n",
|
|||
|
"\n",
|
|||
|
"(You have to tick the box \"No quotation data\" in the Import wizard and select the fields according to the CSV header)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 31,
|
|||
|
"id": "d7d3aae5-7043-409e-b5ae-0aed4a3b4de4",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Data exported to silver_data_for_amibroker.csv\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"def export_to_amibroker_csv(df, output_file='amibroker_data.csv'):\n",
|
|||
|
" # Create a copy of the DataFrame to avoid modifying the original\n",
|
|||
|
" export_df = df.copy()\n",
|
|||
|
" \n",
|
|||
|
" # Reset the index to make the date a column\n",
|
|||
|
" export_df = export_df.reset_index()\n",
|
|||
|
" \n",
|
|||
|
" # Rename columns to match AmiBroker format\n",
|
|||
|
" export_df['Date'] = pd.to_datetime(export_df['Report_Date_as_YYYY-MM-DD'])\n",
|
|||
|
" export_df['Close'] = export_df['Open_Interest_All']\n",
|
|||
|
" export_df['Volume'] = export_df['Pct_of_OI_Prod_Merc_Long_Old']\n",
|
|||
|
" \n",
|
|||
|
" # Create Open, High, Low columns with the same value as Close\n",
|
|||
|
" export_df['Open'] = export_df['Close']\n",
|
|||
|
" export_df['High'] = export_df['Close']\n",
|
|||
|
" export_df['Low'] = export_df['Close']\n",
|
|||
|
" \n",
|
|||
|
" # Select and order columns for AmiBroker\n",
|
|||
|
" amibroker_df = export_df[['Date', 'Open', 'High', 'Low', 'Close', 'Volume']]\n",
|
|||
|
" \n",
|
|||
|
" # Sort by date in descending order (most recent first)\n",
|
|||
|
" amibroker_df = amibroker_df.sort_values('Date', ascending=False)\n",
|
|||
|
" \n",
|
|||
|
" # Export to CSV\n",
|
|||
|
" amibroker_df.to_csv(output_file, index=False, date_format='%Y-%m-%d')\n",
|
|||
|
" print(f\"Data exported to {output_file}\")\n",
|
|||
|
"\n",
|
|||
|
"# Usage\n",
|
|||
|
"export_to_amibroker_csv(filtered_silver_df, 'silver_data_for_amibroker.csv')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "2044602a-9024-4522-bc15-ef8903c28758",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.9"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 5
|
|||
|
}
|