mirror of
https://github.com/norandom/trading_analysis.git
synced 2024-11-21 12:53:42 +00:00
172 lines
6.6 KiB
Python
172 lines
6.6 KiB
Python
import os
|
|
import shutil
|
|
import warnings
|
|
from datetime import datetime, timedelta
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pytz
|
|
import yfinance as yf
|
|
from zipline.data import bundles
|
|
from zipline.data.bundles import register
|
|
from zipline.data.bundles.csvdir import csvdir_equities
|
|
from zipline.data.data_portal import DataPortal
|
|
from zipline.utils.calendar_utils import get_calendar
|
|
from zipline.utils.cli import maybe_show_progress
|
|
|
|
# Disable pandas PerformanceWarnings and FutureWarnings
|
|
warnings.filterwarnings("ignore", category=pd.errors.PerformanceWarning)
|
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
|
|
|
def safe_float_to_uint32(value):
|
|
"""Safely convert float to uint32, clamping values if necessary."""
|
|
return np.uint32(max(0, min(value, np.iinfo(np.uint32).max)))
|
|
|
|
|
|
def process_symbol_data(df, trading_days, missing_dates):
|
|
"""
|
|
Processes the given dataframe (df) for a specific symbol,
|
|
adjusts the data, and fills missing dates.
|
|
|
|
Parameters:
|
|
df (pandas DataFrame): The input dataframe containing the symbol's data.
|
|
trading_days (list): A list of trading days for the specified symbol.
|
|
missing_dates (list): A list of missing dates for the specified symbol.
|
|
|
|
Returns:
|
|
pandas DataFrame: A processed dataframe with adjusted data and missing dates filled.
|
|
|
|
The function first sets the column names of the dataframe. It then drops any rows with missing values.
|
|
An 'adj_factor' is calculated by dividing the 'adj_close' by the 'close' column.
|
|
The 'open', 'high', 'low', and 'close' columns are then multiplied by the 'adj_factor'.
|
|
The 'adj_close' and 'adj_factor' columns are then dropped from the dataframe.
|
|
The index of the dataframe is renamed to 'date'.
|
|
The 'dividend' and 'split' columns are initialized with 0.0 and 1.0 respectively.
|
|
The dataframe is then reindexed to match the trading_days list.
|
|
The dataframe is filled forward (ffill) to fill any missing values.
|
|
For each missing date in the missing_dates list, if it's not already in the dataframe, the previous date's values are copied to that missing date.
|
|
The dataframe is then sorted by the index (date).
|
|
The 'open', 'high', 'low', and 'close' columns are then rounded to the nearest integer and converted to uint32 data type.
|
|
The 'volume' column is filled with 0 if it's missing and clipped to ensure it's a non-negative integer. It's then converted to uint32 data type.
|
|
|
|
The processed dataframe is then returned.
|
|
"""
|
|
|
|
|
|
def main():
|
|
symbols = ['AAPL', 'NFLX', 'NVDA', 'JPM', 'SPY',
|
|
"GC=F", "SI=F", "CL=F", "ZW=F", "PL=F", "ZC=F", "ZS=F", "KC=F",
|
|
"CC=F", "^GDAXI", "^GSPC"]
|
|
|
|
START_DATE = "2010-01-04"
|
|
END_DATE = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d") # Use yesterday's date
|
|
|
|
print(f"Downloading data for {len(symbols)} symbols from {START_DATE} to {END_DATE}")
|
|
stocks_df = yf.download(tickers=symbols, start=START_DATE, end=END_DATE, group_by='ticker')
|
|
print("Data download completed")
|
|
|
|
calendar = get_calendar('XNYS')
|
|
start_session = pd.Timestamp(START_DATE)
|
|
end_session = pd.Timestamp(END_DATE)
|
|
|
|
# Use pandas date_range instead of calendar.sessions_window
|
|
all_days = pd.date_range(start=start_session, end=end_session, freq='D')
|
|
trading_days = [day for day in all_days if calendar.is_session(day)]
|
|
|
|
print(f"Total NYSE trading days: {len(trading_days)}")
|
|
|
|
base_dir = os.path.expanduser('~/.zipline/custom_data/daily')
|
|
os.makedirs(base_dir, exist_ok=True)
|
|
|
|
missing_dates = [pd.Timestamp('2011-01-03'), pd.Timestamp('2016-10-10'), pd.Timestamp('2016-11-11')]
|
|
|
|
for symbol in symbols:
|
|
if symbol in stocks_df.columns.get_level_values(0):
|
|
df = process_symbol_data(stocks_df[symbol].copy(), trading_days, missing_dates)
|
|
print(f"\nSymbol: {symbol}")
|
|
print(f"Date range: {df.index.min()} to {df.index.max()}")
|
|
print(f"Number of rows: {len(df)}")
|
|
print(f"Unique dates: {df.index.nunique()}")
|
|
print("Sample of data:")
|
|
print(df.head())
|
|
csv_file_path = os.path.join(base_dir, f'{symbol}.csv')
|
|
df.to_csv(csv_file_path)
|
|
print(f"CSV file saved: {csv_file_path}")
|
|
|
|
print("\nAll CSV files have been created")
|
|
|
|
bundle_path = os.path.expanduser("~/.zipline/data/custom_data")
|
|
if os.path.exists(bundle_path):
|
|
shutil.rmtree(bundle_path)
|
|
print(f"Removed existing bundle data: {bundle_path}")
|
|
|
|
CSV_FOLDER_PATH = os.path.expanduser("~/.zipline/custom_data")
|
|
|
|
print("\nRegistering the bundle")
|
|
register(
|
|
'custom_data',
|
|
csvdir_equities(['daily'], CSV_FOLDER_PATH),
|
|
calendar_name='XNYS',
|
|
)
|
|
|
|
print("Ingesting the bundle")
|
|
try:
|
|
bundles.ingest('custom_data')
|
|
print("Bundle ingestion completed successfully")
|
|
except Exception as e:
|
|
print(f"Error during bundle ingestion: {str(e)}")
|
|
raise
|
|
|
|
print("\nLoading the bundle")
|
|
try:
|
|
bundle = bundles.load('custom_data')
|
|
print("Bundle loaded successfully")
|
|
except Exception as e:
|
|
print(f"Error loading bundle: {str(e)}")
|
|
raise
|
|
|
|
assets = bundle.asset_finder.retrieve_all(bundle.asset_finder.sids)
|
|
print(f"Bundle contains {len(assets)} assets")
|
|
|
|
print("\nCreating DataPortal for data verification")
|
|
try:
|
|
data_portal = DataPortal(
|
|
asset_finder=bundle.asset_finder,
|
|
trading_calendar=calendar,
|
|
first_trading_day=bundle.equity_daily_bar_reader.first_trading_day,
|
|
equity_daily_reader=bundle.equity_daily_bar_reader,
|
|
adjustment_reader=bundle.adjustment_reader
|
|
)
|
|
print("DataPortal created successfully")
|
|
except Exception as e:
|
|
print(f"Error creating DataPortal: {str(e)}")
|
|
raise
|
|
|
|
print("\nRetrieving historical data")
|
|
try:
|
|
bar_count = len(trading_days)
|
|
|
|
panel = data_portal.get_history_window(
|
|
assets=assets,
|
|
end_dt=end_session,
|
|
bar_count=bar_count,
|
|
frequency='1d',
|
|
field='close',
|
|
data_frequency='daily'
|
|
)
|
|
print("Historical data retrieved successfully")
|
|
print(f"\nData retrieved for {len(assets)} assets")
|
|
print(f"Date range: {panel.index[0]} to {panel.index[-1]}")
|
|
print(f"Number of trading days: {len(panel)}")
|
|
print("\nSample of retrieved data:")
|
|
print(panel.head())
|
|
except Exception as e:
|
|
print(f"Error retrieving historical data: {str(e)}")
|
|
raise
|
|
|
|
print("\nScript completed successfully")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |